BINARY GAS MIXTURE MOTION IN A CYLINDRICAL CHANNEL

V. G. Chernyak UDC 533.6.011

Results of studies on motion of binary mixtures of rarefied gases in channels, obtained by solution of
the kinetic equations and published in the last decade were analyzed briefly in [1]. Overall evaluation of these
studies reveals two significant limitations.

In a number of these studies the results were obtained using lower order approximations of the moment
method and are valid only at low values of the Knudsen number (Kn)., Thus the treatment of the results in fact
reduces to analysis of hydrodynamic or diffusion slip type equations. Moreover, the convergence of the moment
method itself must be verified anew for each concrete problem. Individual attempts to describe isothermal
motion of gas mixtures in channels at arbitrary Kn values have been based on solution of the model Bird—
Hirschfedder —Curtis (BHC) equation with collision integral in Hamel form. However, it is known that this
equation gives a false description of macroscopic characteristics upon transition to the diffusion approximation
Kn<« 1), In fact, the Hamel model contains only three independent free parameters. But even in the simplest
case of isothermal expansion of a binary gas mixture accurate (by Chapman—Enskog theory) values of five
transfer coefficients are required: viscosity coefficients for each component and the mixture as a whole, and
mutual diffusion and barodiffusion coefficients. In the case of inhomogeneous gas temperature the Hamel model
is inapplicable in principle, since it does not describe the phenomenon of thermodiffusion. Thus, the results .
obtained are at best qualitative.

The goal of the present study is a description of motion of a binary gas mixture in a cylindrical capillary
under the influence of gradients in total pressure, concentration, and temperature at arbitrary values of Kn.
The calculation is based on a third-order approximate kinetic equation [2], ensuring exact description of the
system in the diffusion approximation and permitting use of an arbitrary intermolecular interaction potential.

Formulation of the Problem, We will consider the stationary flow of abinary gas mixture in a cylindrical
capillary of radius R under the influence of gradients in pressure, concentration, and temperature, directed
along the z axis. Let the temperatures of the components be equal to each other at any point, but variable along
the channel length. We assume that the capillary is sufficiently long, and that end effects may be neglected.
Then the distribution functions for molecules of each type with weak inhomogeneity intotal pressure p, tem-
perature T, and molar concentration y; can be wriften in the form

d 5 ar
fe:fm[i S E ) e ) )
/ ; i e
where f;, =ni, (zzzT ) exp (— r.) 2kT ) vi; ni, mj are the numerical density and mass of molecules

of the i-th sort; v; is the velocity vector of the molecules; r is the two-dimensional radius vector in the cap-
illary cross section,

Let the perturbaﬁon function h; for molecules of the i-th component obey an approximate third order
kinetic equation [2], which in dimensionless form appears as
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Uj is the macroscopic velocity of molecules of type i, p; and Pj,., are the partial pressure and tangent stress
tensor; q; and J; are the thermal and diffusion flows of component i; vj; and yjj are the collision frequencies
for molecules of the same type and of differing types (i#j); R; is the gas rarefaction parameter, inversely
proportional to the Knudsen number; vi(n) are quantities dependent on the molecular weights of the components,
concentrations, and intermolecular interaction parameters [2].

We assume that at any point on the channel surface the molecules of each type are scattered completely
diffusely by a Maxwall law with the local values of partial density and temperature. Then the boundary condi-
tions for Eq. (1) can be written in the form

hiz =1, &) = 0, (em) >0, @
where n is the normal to the channel wall.

Basic Equations. The problem of Eqs. 2)-) can be reduced to a closed system of integral-moment
equations. To do this it is necessary to write Eq. 2) in integral form with consideration of boundary condition
4) and use the definitions of Eq. 3). As a result, we have
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with the argument of the function [, being (Rjlx—X'|), where {4, is the projection of the vector & on the normal
to the channel sarface.

From the structure of the free terms of the linear integral equations (5) it follows that the solution of
the system has the form

u; = uPv 4+ ulPp + uir, (6)
| Pue = piEY + pltp -+ pllv, Hy= HPv 4 B 3,

Substitution of Eq. (6) in Eq. (5) and equating terms containing the same gradients leads to separation of Eq.
(5) into three independent systems which describe local values of the quantities u{®, pf, #{® (k = p, ¢, 7).
However, in the final outcome, we are concerned with values averaged over the capillary section:
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the angular brackets dencting averaging over the cross sectional area of the channel; the quantities 1 110 las U3
are related to the heat flux along the channel produced by the temperature, concentration, and pressure gradi-
ents; Iy, Iy, lyy characterize thermodiffusion, normal diffusion produced by inhomogeneity in component con-
centration, and barodiffusion; Iy, I3y, I35 characterizes thermal creep, mean numerical gas flow under theaction
of concentration gradients, and Poiseunille flow of the binary gas mixture.

In the general case all the quantities 7,5 depend on the intermolecular interaction potential between
molecules and with the boundary surface, the channel geometry, the concentrations, ratio of component molec-
ular weights, and Knudsen number.

it should be noted that in the thermodynamics of irreversible processes for discontinuous systems [3] one
finds expressions analogous to Eq. (7) and reciprocity relationships I, = lg,(« == p) are postulated. I is of
interest to verify these relationships on the basis of kinetic theory within the framework of the above assump~
tions for arbitrary Kn values.

Solution Mathod. Tn choosing one or the other approximate procedure for solution of system (5) two
factors must be considered: First, Eq. (5) consists of linear Fredholm integral equations of the second sort;
second, the quantities of interest are not the flow profiles of the moving gas, but the quantities averaged over
capillary section, Eq. (8). From the latter fact it follows that the approximate method must converge with the
mean. The Galerkin method satisfies these requirements, and has been proven effective in describing motion
of a single~component gas in channels [4, 5]. To realize this method it is necessary to specify a system of
base functions. From the symmetry of the problem it-follows that in the N~approximation the following ap-
proximate expressions should be used:
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In order to determine the coefficients of the expansion, it is necessary to substitute Eq. @) in Eq. () and
require orthogonality of the expressions thus obtained to each of the base functions. The condition for ortho-
gonality of two arbitrary functions f and g then has the form

1
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As a result, we obtain a system of 6N + 2 linear algebraic equations for determination of the coefficients A(k>,

k), ¢ (),

Solution of the problem of motion of a single-component gas in a channel {4, 5] has shown that with the
approximations of Eq. @) the Galerkin method converges very rapidly. Even in the first approximation (N =1)
the results obtained differ by not more than 1.5% from the reference solution for any values of Kn. Apparently
the same convergence may be expected in the problem of gas mixture motion. In fact, the first approximation
with Eq. @) accurately describes the flow profiles for Kn« 1, while information on the flow value for almost
free-molecular flow (Kn>1) is contained completely in the free terms of the integral-moment equations (5).

In the present study only the first approximation of Eq. 9) was used. The formalism of the Galerkin method
for this case was described in great detail in [4]. Complete expressions for the kinetic coefficients have a
cumbersome form and will not be presented here.

Evaluation. Asymptotic analysis of the results obtained is of interest. For the case of an almost free-
molecular flow (Rj< 1) we have
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In the so-called diffusion limit (R;>1) the results can be presented in the form of the ratio of eight-order
determinants, in which each element depends on the parameters Rj, concentration, molecular weight of com~
ponents, and reduced Chapman—Cowling integrals. Analysis of the behavior of the quantities 1, B at R{>»1
shows that upon transition to the hydrodynamic limit the values of J,;, characterizing the value of the Poiseuille
flow, increase in proportion to R;, while the remaining kinetic coefficients decrease as R{i.

Numerical calculations for intermediate R; values were performed with a BESM-~6 computer to an ac- -
curacy of at least 0.5%. Two gas combinations (helium—argon and helium —deuterium) were chosen for study
because they represent limiting cases of greatly divergent and quite similar molecular weights. The inter-
molecular collision potential was specified in the Lennard—Jones form, withvalues of potential parameters
for identical molecules taken from [6], while for molecules of opposite types they were calculated by the com-
bination rule. Corresponding values of the reduced Chapman—Cowling integrals are given in [6]. Gas tem-~
perature was assumed equal to 295°K, with concentration of the lighter component being varied from zero to
unity. Results of kinetic coefficient [p3 calculations for He—Ar (solid lines) and He—D, (dashed lines) as
functions of rarefaction parameter R, and component concentration y are shown in Figs. 1~4 and Table 1 y =
0.2, 0,5, 0.8 for curves 1-3, respectively).

it was established that at any values of the parameters varied and for any model of the intermolecular
potential in the linear approximation (fow gradients) reciprocity relationships are satisfied, i.e., I5 gzlﬁa.
This agrees with the basic conclusions of thermodynamics of irreversible processes for discrete systems
[3]. Inthe present study diffuse scattering of molecules on the capillary surface was assumed. However, it
can be shown that Onzager symmetry relationships for the kinetic coefficients will be valid for any "gas—
surface® interaction law, since the scattering nucleus satisfies the detailed equilibrium principle.

It is known that the thermodiffusion phenomenon does not exist for Maxwellian molecules. The kinetic
coefficient J,;, characterizing the diffusion flow under the action of a temperature gradient is nonzero in the
case of Maxwellian molecules also. This is because the values of all the flows lap, including 7, also, are
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TABLE 1
—l35-10 (He—Ar) \ 1,,-10* (He—D,)
™~ | e 0,5 08 | o2 0.5 0.8
0,01 9,95 10,0 10,0 —0,713 —0,890 { —1,10
- 0,05 8,89 9,19 9,43 —0,836 —4,47 —1,56
0,1 7,90 8,43 8,88 -—0,716 —1,07 —1,46
0,3 5,53 6,47 7,41 548.1072 | —0,485 | —0,428
0,5 4,25 5,27 6,44 0,696 0,544 0,399
0,7 3,44 4,44 5,70 1,17 1,06 0,957
1,0 2,66 3,58 4,86 1,64 1,55 |- 1,46
3,0 1,04 1,54 2,38 2,10 1,92 1,73
5,0 0,644 0,954 1,55 71 1,52 1,34
10,0 0,331 0,497 | 0.825 04 0.905 | 0,776

defined not only by intermolecular collisions, but also by channel geometry and interaction of gas molecules
with the boundary surface. The first factor proves dominant at R;>1, and the latter ones at Rj<«1.

Table 1 presents values of the kinetic coefficient [,3=1;,. A characteristic feature of the results obtained
for the He—D, mixture is the inversion of the sign of ,; at Ry = (0.3-0.5), This means that the direction of the
barodiffusion flow is determined by both the direction of the pressure gradient and the gas flow regime in the
channel. A similar fact was established previously in [7] for the pair Ar— C0O,. Inversion of the sign of J;; can
be explained by the fact that at R;<« 1, when intermolecular collisions are rare, the dominant role is played by
the difference in effective collision sections. In the case of similar component molecular weights it develops
that at Rj ~1 the dominant role begins to be played by the second factor. This is the cause of the change in sign
of the barodiffusion flow.

Figure 5 compares theory (curves 1~3) with experimental data (points I-IIT) [8] for Poiseuille flow of an
He—Ar mixture at various helium concentrations: y=0.21, 0.50, 0.81, The value of ] *3 was determined from
the ratio of the kinetic coefficient 735 to its free-molecular value, which follows from Eq. (10) at R;~—~0. To
calculate the experimental values of the parameter R; the collision frequency between identical molecules was
specified in analogy with the BHC expression v4j = (8/5)ni52i(12 2), while the frequency of collisions between differ-
ent molecules was chosen after the recommendations of [2].
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Comparison for Ry > 1 shows good (within the limits of experimental uncertainty) agreement of experi-
mental and theoretical results. For R, <1, where the dominant role is played by channel geometry and the
character of molecular interaction with the surface, the theoretical curve lies below the experimental data.
The maximum divergence reaches 5% at an He concentration y = 0.21, 7% at y =0.50, and 10% at y=0.81, This
can be explained by the fact that in actual experiment, upon collision with the channel walls the molecules do
not experience total accommodationofthetangential momentum component, The increase in divergence with
increasing helium concentration is caused by the significantly lower accomodation of the helium molecules
as compared to argon. Figure 6 shows a comparison of theory (curves 1, 2, y =0.50, 0.93, respectively) with
experiment [8] (points) for barodiffusion separation of an He —Ar mixture. The expression for calculatingthe
concentration "shift® upon motion of the gas mixture through the channel under the influence of a pressure
gradient has the form [8, 9]

Ay =y — ¥° = y°(1 — y" )/l

where y! and y0 are the concentrations at the channel output and input, respectively. Divergence of the theo-
retical results from experiment does not exceed 5% at any values of the rarefaction parameter and concentra-
tion.

In conclusion, it should be noted that the results of the present study can be used to describe various
effects in binary gas mixtures (baro~ and thermodiffusion separation, diffusion baroeffect, thermomolecular
pressure, mechanocaloric effect, ete.) for arbitrary Knudsen number and component concentration.

The author thanks A. A. Tarin for providing the experimental results.
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