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Results of studies on motion of binary mixtures  of rarefied gases in channels, obtained by solution of 
the kinetic equations and published in the last decade were analyzed briefly in [1]. Overall evaluation of these 
studies reveals  two significant l imitations.  

In a number of these studies the results  were  obtained using lower order  approximations of the moment 
method and are  valid only at low values of the Knudsen number RKn). Thus the t rea tment  of the results  in fact 
reduces to analysis  of hydrodynamic or  diffusion slip type equations. Moreover ,  the convergence of the moment 
method itself must  be verified anew for each concrete problem. Individual attempts to descr ibe  isothermal  
motion of gas mixtures  in channels at a rb i t r a ry  Kn values have been based on solution of the model Bird-- 
H t r s ch f edde r -Cur t i s  (BHC) equation with collision integral in Hamel form.  However, it is known that this 
equation gives a false descript ion of macroscopic  charac ter i s t ics  upon transi t ion to the diffusion approximation 
(Kn<< 1). In fact, the Hamel model contains only three independent free pa rame te r s .  But even in the simplest  
case of isothermal expansion of a binary gas mixture accurate  (by Chapman-Enskog  theory) values of five 
t rans fe r  coefficients are  required:  viscosi ty coefficients for  each component and the mixture as a whole, and 
mutual diffusion and barodtffusion coefficients.  In the case of [nhomogeneous gas t empera tu re  the Hamel model 
is inapplicable in principle,  since it does not descr ibe the phenomenon of thermodiffusion.  Thus, the resul ts  
obtained are  at best qualitative. 

The goal of the present  study is a descript ion of motion of a binary gas mixture in a cylindrical  capil lary 
under the influence of gradients in total p re s su re ,  concentration, and tempera ture  at a rb i t r a ry  values of Kn. 
The calculation is based on a t h i rd -o rde r  approximate kinetic equation [2], ensuring exact descr ipt ion of the 
sys tem in the diffusion approximation and permit t ing use of an a rb i t r a ry  in termolecular  interact ion potential. 

Formulation of the Problem.  We will consider the stat ionary flow of a binary gas mixture in a cylindrical  
capil lary of radius R under the influence of gradients  in p res su re ,  concentration, and tempera ture ,  directed 
along the z axis.  Let the tgmpera tures  of the components be equal to each other at any point, but variable along 
the channel length. We assume that the capil lary is sufficiently long, and that end effects may be neglected. 
Then the distribution functions for molecules  of each type with weak inhomogeneity intotal  p r e s su re  p, t e m -  
pera ture  T, and mola r  concentration Yi can be wri t ten in the form 

] i -  [i0 t ~, ~ d-Y ~- ~]'-~. d--~-- -[" c~ -- -ff}-~v-~- -~- hi(r, ei) , (1) 

where Jio ---nio [ ~ ]  exp (--  ci); ei = ~2-~o ] vi; n i ,  mi  are the numer ica l  densi ty and mass of molecules 

of the i-th sort ;  v i is the velocity vector  of the molecules;  r is the two-dimensional  radius vector  in the cap- 
i l lary c ross  section. 

Let the perturbation function h i for molecules of the i-th component obey an approximate third order  
kinetic equation [2], which in dimensionless form appears  as 

o,,, ) Hi) + (2) 
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U i is the m a c r o s c o p i c  ve loc i ty  of mo lecu l e s  of type  i, Pi and P i r z  a r e  the par t ia l  p r e s s u r e  and tangent  s t r e s s  
t e n s o r ;  qi and Ji  a r e  the t h e r m a l  and diffusion f lows of component  i; 3'i[ and Yij a r e  the co l l i s ion  f r equenc i e s  
f o r  m o l e c u l e s  of the same  type  and of d i f fer ing  types  (i ~j);  Ri is the gas  r a r e f a c t i o n  p a r a m e t e r ,  i nve r se ly  

to  the Knudsen number ;  vi (n) a r e  quant i t ies  dependent  on the m o l e c u l a r  weights  of the p ropor t iona l  componen t s ,  
concen t ra t ions ,  and i n t e r m o l e c u l a r  in t e rac t ion  p a r a m e t e r s  [2]. 

We a s s u m e  that  at any point on the channel  su r f ace  the m o l e c u l e s  of each type a r e  s c a t t e r e d  comple t e ly  
d i f fuse ly  by" a Maxwall  law with the local  va lues  of pa r t i a l  dens i ty  and t e m p e r a t u r e .  Then the boundary  condi -  
t ions  fo r  Eq. (1) can be wr i t t e n  in the f o r m  

hi(x = i ,  e i )  = 0,  ( e in)  > 0 ,  

w h e r e  n is the n o r m a l  to  the channel  wal l .  

(4) 

Bas ic  Equat ions .  The p rob l e m  of Eqs~ (2)-(4) can be r educed  to  a c losed  s y s t e m  of i n t e g r a l - m o m e n t  
equa t ions .  To do th is  it is n e c e s s a r y  to  wr i t e  Eq.  (2) in in tegra l  f o r m  with cons ide ra t ion  of boundary  condi t ion 
(4) and use  the def ini t ions  of Eq. (3). As a r e su l t ,  we have 
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with the argument  of the function [ n being ( R i ] x - x ' ) ,  where  f~n is the pr~)jee':iot~, of the v, .zctor ~ on the ,aormai 
to the channel s~arface, 

F r o m  the s t ruc tu re  of the f ree  t e r m s  of the l inear  integral  equations (5) it follows that the solution of 
the s y s t e m  has the fo rm 

u~ = u?b  + u~~ + u~(r~T, (6) 
__ ~ ( p ) . , -  (c) ~ (T )_  ./I~;p),V , / f ( c )  , ,U( ' r )~  P~r~ ~ ~.'irz- -1- P i r z ~ i  -1- p~rz'h tt~ = T -~ i  ~i - -  ~ i  ~. 

Substitution of Eq. (6) in Eq. (5) and equating t e r m s  containing the same  gradients  leads  to separa t ion  of Eq. 
<~) -(~ tI~ ~> (k  = 1"). (5) into th ree  independent s y s t e m s  which desc r ibe  local values of the quanti t ies u~ , pi~, p, c, 

However,  in the final outcome, we are  concerned with values averaged over  the capi l la ry  sect ion:  

/ 2 k T o \ l h l  d l n T  l dy d l n p l  

(2~To'~',(l dl,,r ,~lop / <u,> - <u~> = ~,-G-~ / ~ ~ ' -a - - :  + ~~: ~ + z.  --a--.,, 
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the angular  b racke t s  denoting averaging  over  the c r o s s  sect ional  a r e a  of the channel; the quanti t ies  l~1, 112, 113 
a re  re la ted  to the heat flux along the channel produced by the t e m p e r a t u r e ,  concentrat ion,  and p r e s s u r e  g rad i -  
ents;/21~ /22~ 12~ c h a r a c t e r i z e  thermodiffus ion,  normal  diffusion produced by inhomogeneity in component con- 
centrat ion,  and barodiffusion;  /31, 132,133 c h a r a c t e r i z e s  t he rma l  c reep ,  mean  numer ica l  gas  flow under  the action 
of concentrat ion gradien ts ,  and Poiseui l le  flow of the binary gas  mix tu re .  

in the genera l  case  all the quanti t ies l~/3 depend on the in te rmolecu la r  in teract ion potential  between 
molecules  and with the boundary sur face ,  t h e c h a n n e t  geomet ry ,  the concentra t ions ,  r a t io  of component m o l e c -  
u lar  weights ,  and K nudsen number .  

It should be noted that in the t he rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s  for  discontinuous s y s t e m s  [3] one 
finds express ions  analogous to Eq. (7) and rec ip roc i ty  re la t ionships  l ~  = l~c,(a =/= ~) a re  postulated.  It is of 
in teres t  to ver i fy  these  re la t ionships  on the bas is  of kinetic theory  within the f r a m e w o r k  of the above a s s u m p -  
t ions for  a r b i t r a r y  Kn values .  

Solution Method. In choosing one or the other  approx imate  p rocedure  for  solution of s y s t e m  (5) two 
fac tors  must  be cons idered:  F i r s t ,  Eq. (5) cons is t s  of l inear  Fredholm integral  equations of the second sor t ;  
second, the quantit ies of in teres t  a r e  not the flow prof i les  of the moving gas ,  but the quanti t ies averaged  over  
cap i l l a ry  section,  Eq. (8). F rom the l a t t e r  fact it follows that  the approx imate  method must  converge  with the 
mean.  The Galerkin  method sa t i s f ies  these  r e qu i r emen t s ,  and has been proven  effect ive in descr ib ing motion 
of a s ingle-component  gas  in channels [4, 5]. To rea l i ze  this method it is n e c e s s a r y  to specify a s y s t e m  of 
base  functions.  F rom the s y m m e t r y  of the p rob lem it.follows that in the N-approximat ion  the following ap-  
p rox imate  expres s ions  should be used: 

N N 

h=o k=i k=i (9) 
i----- I, 2. 
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In order  to determine the coefficients of the expansion, it is necessa ry  to substitute Eq. (9) in Eq. (5) and 
require  orthogonality of the expressions thus obtained to each of the base functions. The condition for or tho-  
gonality of two arbitra~T functions f and g then has the fo rm 

1 

(I, ~) = J x / (x )  ~ (x) dz  = O. 
D 

As a resul t ,  we obtain a sys tem of 6N + 2 l inear  algebraic  equations for  determination of the coefficients A (k), 
B (k), C (k). 

Solution of the problem of motion of a single-component gas in a channel [4, 5] has shown that with the 
approximations of Eq. (9) the Galerkin method converges very rapidly.  Even in the f i rs t  approximation (N =1) 
the resul ts  obtained differ by not more  than 1.5~ f rom the re fe rence  solution for any values of Kn. Apparently 
the same convergence may be expected in the problem of gas mixture motion. In fact, the f i rs t  approximation 
with Eq. (9) accurate ly  descr ibes  the flow profiles for  Kn<<l, while information on the flow value for almost  
f r ee -molecu la r  flow (Kn>>l) is contained completely in the free t e rms  of the in tegra l -moment  equations (5). 
In the present  study only the f i rs t  approximation of Eq. (9) was used. Tile fo rmal i sm of the Galerkin method 
for th i s ' case  was described in great  detail in [4]. Complete expressions for the kinetic coefficients have a 
cumbersome form and will not be presented here.  

Evaluation. Asymptotic analysis  of the resul ts  obtained is of interest .  For  the ease of an almost  f r ee -  
molecular  flow (Ri<< 1) we have 

0 R, ,o , , )  + (, - y) / N  / l l ,  = - -  - ~  y - - i - f -  R~ In R~ , lla = 13, = 3 - ~  (10)  

+ ~ ( l - - g ) ( i §  , l,,=:l,,=: 3--~-- ~ . i -F ~ R ~ l n B ~  i N  / i + ~ n ,  lnR~ , 

12~ = l ~  - a V ~  t ~- - T -  \ "%t § - g - -  ' 

In the so-cal led diffusion limit (R i >> 1) the resul ts  can be presented in the form of the rat io of e igh t -o rder  
determinants ,  in which each element depends on the pa ramete r s  Ri, concentration, molecular  weight of com-  
ponents, and reduced Chapman-Cowl ing  integrals .  Analysis of the behavior of the quantities lo~fl at Ri >> 1 
shows that upon t rans i t ion  to the hydrodynamic limit the values of 133, charac ter iz ing  the value of the Poiseuille 
flow, increase  in propor t ion to R i, while the remaining kinetic coefficients decrease  as R~ I. 

Numerical  calculat ions for intermediate  R i values were  per formed with a BIgSM-6 computer  to an a c -  
curacy of at least  0.5%. Two gas combinations (he l ium-argon  and he l ium-deu te r ium)  were  chosen for study 
because they represent  l imiting eases of great ly  divergent and quite s imi lar  molecular  weights.  The inter-  
molecular  collision potential was specified in the L e n n a r d - J o n e s  form, withvalues of potential pa ramete r s  
for  identical molecules  taken f rom [6], while for molecules  of opposite types they were calculated by the com-  
bination rule.  Corresponding values of the reduced Chapman-Cowl ing  integrals are  given in [6]. Gas tern- 
pe ra tu re  was assumed equal to 295~ with concentration of the l ighter component being varied f rom zero  to 
unity. Results  of kinetic coefficient lo#3 calculations for H e - A r  (solid lines) and H e - D  2 (dashed lines) as 
functions of rarefact ion pa ramete r  R 1 and component concentrat ion y are  shown in Figs.  1-4 and Table 1 (y = 
0.2, 0.5, 0.8 for curves 1-3, respect ively) .  

It was established that at any values of the pa ramete r s  varied and for  any model of the in termolecular  
potential in the l inear  approximation (low gradients)  rec ip roc i ty  relat ionships a re  satisfied, i.e., lafl =l/3c~- 
This agrees  with the basic conclusions of thermodynamics  of i r revers ib le  p rocesses  for  discrete  sys tems 
[3]. In the present  study diffuse scat ter ing of molecules  on the capi l lary surface was assumed.  However, it 
can be shown that Onzager symmet ry  relat ionships for  the kinetic coefficients will be valid for any n g a s -  
surface ~ interaction law, since the scat ter ing nucleus sat isf ies the detailed equilibrium principle.  

It is known that the thermodiffusion phenomenon does not exist for Maxwellian molecules .  The kinetic 
coefficient 121, charac te r iz ing  the diffusion fiow under the action of a t empera tu re  gradient is nonzero in the 
case of Ma.~vellian molecules  also. This is because the values of all the flows loq3, including 12i also, are  
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TABLE 1 

0,0i 
0,05 
0,i 
0,3 
0,5 
0,7 
t,0 
3,0 
5,0 

10,0 

--/is.10 

0,2 

9,95 
8,89 
7,90 
5,53 
4,25 
3,44 
2.66 
i,04 
0,644 
0,33i 

He--Ar) 

0,5 0,8 

10,0 iO,O 
9,i9 9,43 
8,43 8,88 
6,47 7,4i 
5,27 6,44 
~,44 5,70 
3,58 4,86 
i,5i 2,38 
0,954 1,55 
0,497 0,825 

0,2 

--0,7i3 
--0,836 
--0,7t6 

5,t8.10 -2 
0,696 
i,17 
t,64 
2,i0 
,7i 
,04 

/.re.tO ~ (He--D.,) 

0,5 0,8 

--0,890 --t,t0 
--i,t7 --1,56 
~t,07 --i,46 
--0,185 --0,428 

0,544 0,399 
t .06 0,957 
i155 1,46 
t,92 t,73 
t,52 t,34 
0,905 0,776 

defined not only by i n t e r m o l e c u l a r  co l l i s ions ,  but a l so  by channel g e o m e t r y  and in te rac t ion  of gas  m o l e c u l e s  
with the  boundary  s u r f a c e .  The f i r s t  f a c t o r  p r o v e s  dominant  at Ri>>l ,  and the  l a t t e r  ones at Ri<<l .  

Table 1 p r e s e n t s  values  of the  k inet ic  coeff ic ient  123=132. A c h a r a c t e r i s t i c  f ea tu re  of the r e su l t s  obtained 
for  the He--D 2 mix t u r e  is the inve r s ion  of the s ign of /23 at Ri = (0.3-0.5).  This  m e a n s  that  the d i r ec t ion  of the 
barod i f fus ion  flow is de t e rmined  by both the d i r ec t ion  of the p r e s s u r e  g rad ien t  and the gas  flow r e g i m e  in the 
channel .  A s i m i l a r  fact  was  es tab l i shed  p r e v i o u s l y  in [7] f o r  the pa i r  A t -  CO~. Invers ion  of the  s ign of 123 can 
be explained by the  fact  that  at Ri<< 1, when i n t e r m o l e c u l a r  co l l i s ions  a r e  r a r e ,  the dominant  ro l e  is p layed by 
the d i f fe rence  tn ef fec t ive  co! l i s ion  sec t ions .  In the case  of s i m i l a r  component  m o l e c u l a r  weights  it develops  
that  at Ri "~ 1 the dominant  ro le  begins  to  be played by the second f ac to r .  This  is the cause  of the change in s ign 
of the ba rod t f fus ion  flow. 

F igure  5 c o m p a r e s  t h e o r y  (curves 1-3) with expe r imen ta l  da ta  (points I-HI) [8] fo r  Po t seu l l l e  flow of an 
H e - A t  mix tu re  at va r ious  he l ium c onc e n t r a t i ons :  y=0~  0.50, 0.81. The value of I ~3 was  de t e rmined  f r o m  
the ra t io  of the k inet ic  coeff ic ient  133 to  its f r e e - m o l e c u l a r  value,  which fol lows f r o m  Eq. (10) at R i ~ 0 .  To 
calcula te  the  expe r imen ta l  values  of the p a r a m e t e r  R i the  co l l i s ion  f r equency  between ident ical  m o l e c u l e s  was  
speci f ied  in ana logy  with the BHC e x p r e s s i o n  ~/ii = (8/5)nigli(t2"2), while the f r equency  of co l l i s ions  between d i f f e r -  
ent m o l e c u l e s  was  chosen  a f t e r  the r e c o m m e n d a t i o n s  of [2]. 
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Comparison for R l > 1 shows good (within the l imits of experimental  uncertainty) agreement  of exper i -  
mental and theoret ical  results~ For  R 1 < 1, where the dominant role is played by channel geometry  and the 
characfer  of molecular  interaction with the surface,  the theoret ical  curve lies below the experimental  data. 
The maximum divergence reaches  5% at an He concentrat ion y = 0.21, 7% at y =0.50, and 10% at y =0.81. This 
can be explained by the fact that in actual experiment,  upon collision with the channel walls the molecules do 
not experience total accommodat ionof the tangent ia l  momentum component. The increase  in divergence with 
increasing helium concentration is caused by the significantly lower accomodation of the helium molecules 
as compared to argon.  Figure 6 shows a comparison of theory (curves 1, 2, y =0.50, 0.93, respectively) with 
experiment [8] (points) for  barodiffusion separat ion of an H e - A r  mixture .  The express ion for calculatingthe 
concentrat ion "shift" upon motion of the gas mixture through the channel under the influence of a p re s su re  
gradient has the form [8, 9] 

Ay = yl _ y0 = y0(t _ y O ) l j l ~  ' 

where yt and y0 are  the concentrat ions at the channel output and input, respect ively .  Divergence of the theo-  
ret ical  resul ts  f rom experiment does not exceed 5% at any values of the rarefact ion pa rame te r  and concent ra-  
tion. 

In conclusion, it should be noted that the resul ts  of the present  study can be used to descr ibe  various 
effects in binary gas mixtures  (baro- and thermodiffusion separation,  diffusion baroeffect ,  the rmomolecu la r  
p r e s su re ,  mechanocalor tc  effect, etco) for a rb i t r a ry  Knudsen number and component concentration.  

The author  thanks A. A. Turin for  providing the experimental  resu l t s .  
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